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Summary

Computations were performed to determine the

effect of an overall bow-type initial imperfection on

the reliability of structural panels under combined

compression and shear loadings. A panel's reliability
is the probability that it will perform its intended

function in this case, carry a given load without

buckling or exceeding in-plane strain allowables. For

a panel loaded in compression, a small initial bow

can cause large bending stresses that reduce both the

buckling load and the load at which strain allowables
arc exceeded; hence, the bow reduces the reliability

of the panel. In this report, analytical studies on

two stiffened panels quantified that effect, which was
found to bc substantial.

Introduction

Numerous studies have shown that initial geo-

metric imperfections can substantially reduce the

load-carrying ability of thin plate and shell struc-

tures when the loading involves compression (e.g.,

refs. 1 6). Imperfections can have an even greater ef-
fect on these plate and shell structures if the struc-

tures are highly optimized without accounting for the

imperfections. (Highly optimized structures can have
substantial performance losses under any off-design

condition.)

A smaller number of studies have used a proba-

bilistic approach to relate the statistical nature of the

imperfection (for example, its shape, magnitude, and

distribution) to the probability that the structure can
carry a given load. That probability is denoted the

reliability of the structure. Many of these studies are
cited and summarized in references 7 9.

The type of imperfection studied with a proba-

bilistic approach in references 7 9 is a random non-

symmetric imperfection in circular cylindrical shell
structures. Test data are used to obtain the statistics

of the imperfections.

A different type of common initial geornctric im-
perfection is an overall bow in a stiffened panel. An

analysis procedure for calculating the effect of a bow

on the stresses in and buckling loads of stiffened
compression panels is described and demonstrated in
references 10-15.

In this report, probabilistic concepts are com-

bined with the analysis procedure of refer-

ences 10 15. The objectives are (1) to establish the

effect of a bow-type imperfection on the structural

reliability of stiffened panels, (2) to assess the sen-
sitivity of the reliability to accurate specification of

the bow statistics, and (3) to illustrate the approach

used to compute the reliability. The size of the bow

is the single random variable. The probability that

a panel with this random bow can carry a specified

load is the reliability of the panel at that load.

Two panels are considered. These panels are

designed deterministically for minimum weight un-

der the assumption that they are flat (i.e., with-

out a bow). Both panels are blade-stiffened, made
of graphite-epoxy, and designed for combined com-

pression and shear loadings. However, one panel is

designed to carry a greater load than the other.

First, the analysis-design procedure is summa-

rized. Next, the design studies leading to the two

minimum-weight panels are described. Then, the ef-

fect of a bow on the load-carrying ability of these
two panels is discussed; failure mechanisms consid-

ered are buckling and excessive strain at the ply

level. Finally, for various distributions of the bow,

the reliability of the two panels is presented and dis-

cussed. Appendixes A D contain additional expla-
nations of the analysis-design procedure, tabulated

values of failure load versus magnitude of the bow,

example calculations, and information on the distri-
bution functions and related statistical parameters

for the distributions used in this report.

Symbols

A

b

C

Dx

El, E2

ET

ei

emax

F

area

depth of blade

distance from neutral surface of

panel to location where strain is
calculated

smeared orthotropic bending
stiffness

Young's modulus of composite ply
in fiber direction and transverse to

fiber direction, respectively (table I)

longitudinal extensional stiffness of

panel

overall bow in panel, measured at

panel midlength

values of e for a given value of F

standardized values of ei

maximum allowable value of e

ratio of failure load to design load,

defined in equation (A5)

specified value of F



G12 in-plane shear modulus of composite

ply in coordinate system defined by

fiber direction (table I)

L panel length

1ll bending moment caused by bow in
panel

l_lx applied bending moment used in
figure A1

N(/x, a) normal (Gaussian) distribution;

# is the mean, a is the standard
deviation

N,_ longitudinal compressive load per

unit length

NxE Euler buckling load of panel

Nzy shear load per unit length

Ny transverse compressive load per unit
length

n integer; number of buckling half-
waves in x-direction

P probability

Q lateral pressure loading on panel in
figure A1

R reliability; probability that struc-

ture can carry a specified load

ti ply thicknesses

X, Y, Z Cartesian coordinate axes defined in

figure 1

x, y, z coordinate directions

ez strain in x-direction

0 ply orientation angle

A half-wavelength of buckling mode in
x-direction

# mean value of a distribution

/112 Poisson's ratio of composite ply in

coordinate system defined by fiber

direction (table I)

a standard deviation of a distribution

standard cumulative distribution
function

Summary of Analysis-Design Procedure

The two composite panels in this report were ob-

tained from a computer program for analyzing and

2

sizing uniaxially stiffened composite panels. The

computer program, denoted PASCO (refs. 12-16),
incorporates an cigcnvalue buckling analysis, a stress

analysis, and an optimization procedure. The opti-

mization procedure adjusts the values of design vari-

ables (ply thicknesses and plate widths) to obtain the

minimum-weight panel design that, for a specified
design load, does not violate behavioral constraints.

For this case, the constraints prevent buckling and

excessive strains. All calculations in this analysis-
design procedure are deterministic.

The PASCO program is also used to calculate the

response of these two composite panels when they

have an initial bow-type imperfection. When a panel

is compressed, the bow causes a bending moment
that affects the stress distribution. Depending upon

whether the bow is positive or negative, the bending
moment causes additional compressive stresses in the

skin or in the extreme fibers of the stiffener, respec-
tively. These additional stresses generally reduce the
buckling load. A panel with a bow and with the

loading considered in this report is shown in figure 1.

The bow is in the shape of a half-sine wave along
the length. The size of the bow at panel midlength

(x = L/2) is denoted e. In figure 1, e is positive. Ad-

ditional information on the analysis-design procedure
is presented in appendix A.

X

J .-Y

Nx .¢

Positive bow shown

Figure 1. Stiffened panel with initial bow, applied loading,
and coordinate system.

Design Studies--No Initial Bow

Two rectangular, graphite-epoxy, blade-stiffened

panels were designed to carry combined compression

and shear loadings. The panels were designed as if
they were perfectly fiat. The main diffcrcnce between

the two panels is the intensity of the loading; one
panel is lightly loaded, the other is heavily loaded.

The section that follows describes the general con-
figuration of the two panels. The second section



describesthe designrequirements.The third sec-
tiondescribesthefinaldesigns.Graphite-epoxyply
propertiesusedin theanalysisaregivenin tableI.

TableI. PropertiesofUnidirectionalGraphite-Epoxy
MaterialUsedinCalculations

Symbol Value
El 21.0 x 10 6 psi

E2 2.1 x 106 psi

G12 1.0 x 106 psi

#_2 0.38

General Panel Configuration

The graphite-epoxy panels contain six equally
spaced stiffeners, are 30 in. long, and are simply sup-

ported on all four edges. The overall shape and load-

ing are shown in figure 2. For each panel, the skin,

blade, and attachment flange are balanced symmet-

ric laminates made up of -t-45 °, 0 °, and 90 ° plies.

Fiber orientation is indicated by the angle 6, which
is measured with respect to the x-direction as shown

in figure 2. The panels arc intended to represent

the design shown in figure 3, in which a represen-

tative portion of the laminated panel skin and the
laminated blade with attachment flange are shown

separated from one another.

Figure 2. Overall shape and loading for two graphite-epoxy
panels. Panels are designed as if flat.

The mathematical model used for analysis and de-

sign is somewhat idealized compared with the design

concept shown in figure 3. The mathematical model
of the skin is the same as in figure 3, but the region

where the blade joins the attachment flange is dif-

ferent. The mathematical model, including the ply

orientation angles and stacking sequence, is shown

in figure 4. Seven ply thicknesses (ti,i = 1,2,..., 7)
and the depth b of the blade serve as design variables.

Ply thicknesses are assumed to vary continuously.

Skin
+45 °

5  _-;iioo
...... -- -4 o

, _ +4._o
/

-45 °
0o

-45 °
+45 °

Blade with
attachment flanges

t Extra thickness of 0°

plies at center of blade

Figure 3. Design concept for skin, blade, and attachment
flanges. Angles indicate ply orientation. Not to scale.

+45 °

Skin J_ ttlt_,-45:
I , ,,,ll I ,,[_t_ 90°

II Iil I '1 ' " ' _- t, -45 °
k_ t_ +45 °

+45 °
-45 °

0o
90°
90°

0o
-45 °
+45 °

Blade with
b attachment flanges

_L

Figure 4. Mathematical model of design concept of figure 3.
Used for analysis and sizing. Design variables b and ti are
shown. Angles indicate ply orientation for each ti. Not to
scale.

Design Requirements

The design requirements are the loading and the

constraints. The loading is combined in-plane com-

pression N, and in-plane shear Nzy. Constraints are

placed on buckling and in-plane strains at the ply
level. For manufacturing and cost considerations, the

attachment flange width and the stiffener spacing are
fixed values. The design requirements for the two

panels are as follows:

3



_Lig__loaded panel

• Design load: Nx -- 3000 lb/in, and

Nxv = 1000 lb/in.

• Requirements on dimensions are given in

figure 5.

Heavily loaded panel

• Design load: Nx = 25000 lb/in, and

Nxv = 5000 lb/in.

• Requirements on dimensions are given in

figure 6.

Both panels

• Panels carry their design load without

buckling.

• Panels carry design load without exceeding

ply-level, in-plane strains of =t=0.005 in both

the fiber direction and transverse to fiber

direction, and +0.01 shear strain in any ply.

t__ 5.0 _J 2--t 5-
i I

, lil I ,

U v.,abe
Figure 5. Design requirements on dimensions of cross section

for lightly loaded panel. One repeating clement is shown.

Dimensions are in inches.

k_.. _1

I , I
[ I I

Oesi!n variable

Figure 6. Design requirements on dimensions of cross section

for heavily loaded panel. One repeating element is shown.
Dimensions are in inches.

is shown. As stated earlier, the panels consist of six

equally spaced stiffeners and arc 30 in. long. Because

of the design requirements on stiffener spacing, the

lightly loaded panel is 30 in. wide; the heavily loaded

panel is 36 in. wide.

Table II. Design Variables (Ply Thicknesses ti and Blade

Depth b) for Two Minimum-Weight Designs

Design

_-ariable

tl

t2

ta

t4

t5

t6

t7

b

Ply angle

0 for

ti, deg

±45

0

90

±45

0

90

0

Value of design _-ariables, in.

Lightly Heavily

loaded loaded

design design

0.018899

.002566

.001104

.006315

.019658

a.001000

.038390

1.448772

0.026711

.012936

.001425

.013404

.096217

%001000

.066144

2.035960

aLower bound,

For both panels the skin consists mainly of -t-45 °

plies with a small amount of 0 ° and 90 ° material

in the center. Also, the attachment flange and blade

consist mainly of 0 ° plies. The thicknesses of the plies

at each angle are indicated in figures 7 and 8 by the

various layers in each plate element. To account for

bending moments produced by the bow, the blade

is modeled in four segments, each b/4 deep, and

each capable of carrying a different axial load. (See

figs. 7 and 8.) The bending moment is accounted

for (approximately) by the variation in tile axial load

among the four segments, tile attachment flange, and

the skin (ref. 11). The larger the number of segments,

the better the approximation.

Both panels buckle at the design load; for each

panel, two buckling modes are critical. One of these

two modes has a longitudinal half-wavelength A that

is equal to the panel length L. The other mode has a

longitudinal half-wavelength that is shorter than the

panel length. For the lightly loaded panel, the two

buckling modes are shown in figures 9(a) and 9(b).

Both figures are contour plots of the lateral deflection

of the skin. Tile A = L mode shown in figure 9(a)

is from the adjusted analysis technique I mentioned

Final Designs

The designs obtained using PASCO are defined

in figures 7 and 8 and table II. Dimensions within

figures 7 and 8 are to scale. Only a repeating clement

1When calculating the buckling load of a finite rectangular

stiffened plate that is loaded by in-plane shear (Nxv), the an-
alyst can generally assume that correct boundary conditions at

the ends of the panel (x = O, x = L) arc more important than

correct boundary conditions along the sides that are parallel to

4



0.083

Figure 7. Final design for lightly loaded panel. One repeating element is shown. Dimensions are in inches.

0.136

0.384

Figure 8. Final design for heavily loaded panel. One repeating element is shown. Dimensions are in inches.

in appendix A and described in references I2, 13,
and 16. The mode shape shown in figure 9(b) has a

longitudinal half-wavelength of k = L/5. Although

the buckling mode shape in figure 9(b) does not

satisfy simple support boundary conditions at the
ends of the panel, the buckling wavelength is short

enough for the mode to develop in the center portion

of the panel. For the heavily loaded panel, the two

buckling modes are for k = L and A = L/2. In
addition to being buckling critical at the design load,

the heavily loaded panel is also strain critical at the

design load.

the stiffeners. This assessment is particularly true if the buckling

half-wavelength )_in the x-direction is equal to the panel length L.
In a discrete stiffener solution, VIPASA (refs. 17 19), which is

the buckling analysis within PASCO, can aecount for boundary
conditions along the sides of the panel, but the VIPASA program

cannot account for boundary conditions along the ends. However,
with a smeared stiffener solution, the panel can be rotated 90° and

boundary conditions can be placed on the ends of the panel. That

smeared stiffener solution, which is denoted Fs,9Oin reference 13,

is shown in figure 9(a).

The contour plots shown in figure 9 were obtained

with the computer program VICONOPT (refs. 20

23) which, in many ways, is the successor to the

PASCO program.

Effect of Initial Bow on Failure Load

Both minimum-weight panels described in the

previous section were analyzed under the assumption
that they had various amounts of initial bow. The
bow is in the form of a half-sine wave along the

length. The failure load of the panel is assumed
to be the lower of the buckling load and the load

at which any strain exceeds the corresponding ply-

level allowable strain given in the section "Design

Requirements." The results for the lightly loaded

panel are shown in figure 10; the results for the

heavily loaded panel are shown in figure 11. In both

figures, the ratio of the failure load to the design load
is shown as a function of e, the size of the bow (fig. 1).

Note that the curves are not symmetric with respect
to the line e = 0.
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(a) Mode for which )_ = L; Buckling load/Design load
0.99798.
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(b) Mode for which A -- L/5; Buckling load/Design load =

1.00265.

Figure 9. Buckling mode shapes for fiat, lightly loaded panel

under design loading of N, = 3000 Ib/in. and N,_ =

1000 lb/in.
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Figure 10. Variation of nondimensional failure load with ini-

tial bow for lightly loaded panel. For this case, the failure

mode is buckling.
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Figure 11. Variation of nondimensional failure load with ini-

tial bow for heavily loaded panel.

When the panel is compressed, the bow produces

large bending strains that are added to the uniform

axial strains of the flat panel. A positive value of e

adds compression to the skin; a negative value of e.

adds compression to the tip of the blade. For the

lightly loaded panel (fig. 10), the failure mode is

buckling. For example, at e = -0.1 in., the panel

buckles at about 0.57 times the design load. Both

components of the design load vector are multiplied



by the same factor to obtain the failure load vector,
as shown in equation (1):

[Nr] [30001=[,7,0][2] _0.57 N._y =0.57L1000] L 57°j (1)
L ]_xy ] failure design

For this example of e = -0.1 in., the buckling mode

has a longitudinal half-wavelength of A = L/9.

For the heavily loaded panel (fig. 11), the failure

mode is excessive strain (material strength failure).

For reference, tile curve for buckling is also shown in

figure 11. At e -- 0, buckling and excessive strain
occur simultaneously at the design load. For other

values of e, excessive strain occurs at a lower load

than the buckling load.

Additional information on the analysis of a panel

with a bow is given in appendix A. For both panels,
the variation of the failure load with e is tabulated

in appendix B so that reliabilities can be calculated
for distributions of the bow not considered herein.

Reliability

A structure's reliability is defined as the proba-

bility that it will perform its intended fimction with-

out failing. In the present context, tile reliability is

the probability that the panel will carry a given load
without buckling or exceeding allowable strains. In

general, to calculate the reliability, two types of in-
formation arc needed: first, the relationship between

the failure load of the panel and the values of the ran-

dom variables; second, the joint probability density
of the random variables.

In this report, a single random variable is
considered the size e of the bow. The first type

of information, the failure load as a flmction of e, is

obtained with PASCO and is illustrated in figures 10

and 11. In subsequent sections of this report, the
size e of the bow is assumed to have various, speci-

fied probability densities. 2 This assumption provides

the second type of information.

In tile first section below, e is assumed to have a

normal distribution; the reliability of the two panels
is examined for three values of the standard devia-

tion. In the second section, the distributions consid-
ered for e are a normal distribution and two extreme

value distributions, all with the same mean and same
standard deviation. In the third section, the distri-

butions are similar to those in the second section, ex-

cept that. the distributions are truncated; a value of e

larger than a specified value is not allowed. Studies

are presented that show the effect of these distribu-
tions on the reliability of the two panels. Sample cal-
culations that illustrate reliability concepts are given

in appendix C.

Bow With Normal Distribution

In this section, the value of e is assumed to have

a normal distribution N(#, a), where # is the mean
and cr is tile standard deviation. For this report,

the mean value of e is taken to be zero; that is,

# = 0. In this section, three values of the standard
deviation are considered: cr = 0.01, 0.02, and 0.05 in.

The probability density functions for these three

distributions of e are shown in figure 12.

5O

4O

¢-

30

_Z"

"_ 20
JEI

13_
10

Standard deviation, in.

--0.01
........02

.05

"'." V',.'"-, ......a_ _ --.I _ ..r J-0.20-.is-lo-.os ; .os .lo
Size of bow, e, in.

Fignlre 12. Probability densities for three normal distributions
of bow.

2In this report, each distribution is assumed. Quantitative

procedures to help determine the validity of an assumed distri-

bution are goodness-of-fit tests. Two examples are the chi-square

and Kolmogorov-Smirnov tests. In both tests, comparisons arc

made between the observed experimental data and the corre-

sponding data from the assumed theoretical distribution. If dif-

ferences between the two sets of data are sufficiently smM1, the

assumed distribution is accepted. Hypothesis test procedures are

used to determine a "sufficiently small difference." In such pro-

cedures, an acceptable difference is defined based on the number

of samples in the experimental data and on the significance level

that is adopted. In the final analysis, engineering judgment as

The reliability of the lightly loaded imperfect

panel at various load levels is presented in figure 13.

The reliability of the heavily loaded imperfect panel

is presented in figure 14. (For reference, the re-
liability of a perfectly flat panel is also shown in

figs. 13 and 14.) At low load levels (Applied load/

Design load _< 0.4), the reliability is approximately

unity for both imperfect panels, regardless of the

well as quantitative measures of goodness of fit are used to define

the distribution (refs. 24 27).
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Figure 13. Reliability of lightly loaded panel versus ratio
of applied load to design load for three distributions of
initial bow. The probability densities for these three

distributions are given in figure 12. Reliability of perfectly
flat panel is also shown.
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with a bow standard deviation of only 0.01 in., the
reliability is substantially reduced compared with a

perfectly flat panel. These results also indicate the

sensitivity of the reliability to the statistical param-
eters, such as the standard deviation.

The curves can be interpreted in the following
way. Assume that the goal is to have a relia-

bility of 0.99 after accounting for the bow. As-

sume, also, that the design process ignores the bow
but uses a knockdown factor to account for uncer-

tainty. For the heavily loaded panel with a bow stan-

dard deviation of 0.05 in., the reliability is 0.99 at

Applied load/Design load _ 0.55. Thus, the required

knockdown factor k would be 0.55. Equivalently, the
bow can be ignored but the design load increased

by 82 percent (1/k = 1.82). If, for example, a 50-per-

cent higher load is used, the reliability is only 0.85
(R = 0.85 at Applied load/Design load = 0.66). Sim-

ilar results occur for the lightly loaded panel.

Bow With Normal and Extreme Value
Distributions

In this section, a comparison is made between the

reliabilities of panels with three different distribu-

tions of the bow: a normal distribution, a type I
asymptotic distribution of maximum extreme values

(maximum extreme value distribution), and a type I
asymptotic distribution of minimum extreme values

(minimum extreme value distribution). 3 Parameters
that define the three distributions are selected so that
all three distributions have the same mean and same

standard deviation (p = 0 in. and a = 0.02 in.).
Only the higher statistical moments differ. The prob-
ability density flmctions for the three distributions

are shown in figure 15. The statistical parameters

for these distributions are given in appendix D along
with the distribution functions.

Results for the lightly loaded panel are presented
in figure 16 and for the heavily loaded panel in

figure 17. In each case only the high-reliability

Figure 14. Reliability of heavily loaded panel versus ratio
of applied load to design load for three distributions of

initial bow. Probability densities are given in figure 12.
Reliability of perfectly flat panel is also shown.

distribution of the bow. For higher load levels, the

reliability decreases and depends strongly upon the

distribution of the bow. When the applied load is

equal to the design load, the reliability is zero.

The reliability curves in figures 13 and 14 illus-

trate the importance of accounting for a bow. Even

3Extreme value distributions are important for engineering
applications. These distributions can be used to describe the

mm,dmum or minimum values from randoln phenomena such a.s

wind speed, wave heights, and rainfall. The phenomena have
distributions, but only the maximum or minimum values of the

phenomena are of interest, not the average or typical values. If

a phenomenon has a distribution with an exponentially decaying

tail in the direction of interest (to the right is maximum, etc.),
the corresponding extreme vahm distribution is denoted type I.

A normal distribution is an example of a distribution with ex-

ponentially decaying tails in both directions. For information on
extreme value distributions, see references 26 and 28.
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Figure 16. Reliability of lightly loaded panel versus ratio of
applied load to design load for three distributions of bow.
Probability densities are given in figure 15.

portions of the curves are shown. Even though the
means and standard deviations of the imperfections

are equal, the curves in each figure are different.
These differences demonstrate that the reliability of

an imperfect panel depends upon the details of the

probability density of the imperfection. The results
can be interpreted in the following two ways.

First, suppose that three panel fabrication pro-

cesses produce the same mean and standard devia-

tion for an imperfection. The results indicate that,

with these limited data, we cannot assume that the
three fabrication processes are equivalent. The dis-

tributions could differ; therefore, one of the processes

could be considerably better because it could produce

panels with a higher reliability than the other two.

Second, suppose only one fabrication process ex-

ists and only the first two moments of the imper-

fection (the mean and the standard deviation) are
known. To calculate the performance of the pan-

els, the analyst must assume the distribution of the

imperfection; therefore, the higher moments are as-
sumed. The results indicate that the calculations

will be sensitive to the assumptions. The common

assumption of a normal distribution can be conser-
vative or unconservative.

Bow With Truncated Normal and

Truncated Extreme Value Distributions

In practice, quality control procedures would

eliminate panels with a bow larger than a specified

1.0
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¢_
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...... Minimum ',,_
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Figure 17. Reliability of heavily loaded panel versus ratio of
applied load to design load for three distributions of bow.
Probability densities are given in figure 15.

maximum value. For that reason, the large tails on

the probability density functions (e.g., fig. 15) are un-
realistic. Using truncated distributions is one way to

study panel reliability and account for such quality
control measures.

In this section, the distributions of the bow are

similar to those of the previous section, except, that



the distributionsare truncated.For thesestudies,
theabsolutevalueof tilemaximumbow@max)isse-
lectedto be0.04in. Becausethestandarddeviations
of theoriginaluntruncateddistributionsare0.02in.,
the maximumbowis ±2a of the original,untrun-
careddistributions. The probabilitydensityflmc-
tionsfor thesedistributionsareshownin figure18.
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Figure 18. Probability densities for three truncated distribu-

tions. Original probability densities are given in figure 15.
Truncations occur at e = :t:0.04 in.

The reliability of panels with these distributions

of e is shown in figures 19 and 20. (The lightly loaded

panel is in fig. i9 and the heavily loaded panel is in
fig. 20.) For comparison, the figures also include the

reliabilities of the paneI if the distributions are not
truncated.

The results indicate that if the original distribu-

tion is minimum extreme value, an ema x of -t=2o" pro-
vides panels that are substantially more reliable. If

the distribution is normal, an emax of ±2a provides
panels that are moderately more reliable. If the dis-

tribution is maximum extreme value, an ema_x of ±2a

has negligible effect on panel reliability. The results

also indicate that even with truncated distributions,

the reiiability is sensitive to details of a distribution,
but less sensitive for the truncated distribution than
for the untruncated one.

Concluding Remarks

Analytical studies were conducted on two

minimum-weight, stiffened panels designed as if

1.0

"_.9

n-

Distribution
...... Maximum

....... Normal ,_,

----- Minimum \)i_

Trunc. maximum
---{D--- Trunc. normal

Trunc. minimum

.8 I 1 I
.5 .6 .7 .8

Applied load/Design load

Figure 19. Reliability of lightly loaded panel for original and
truncated distributions of figures 15 and 18, respectively.
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Trunc. minimum _"
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Figure 20. Reliability of heavily loaded panel for original and
truncated distributions of figures 15 and 18, respectively.

they were flat to determine the extent to which a

small overall bow could degrade their reliability. The

loading case was combined compression and shear.
The degradation in reliability was found to be sub-

stantial. This report also demonstrates the impor-
tance of accurate specification of bow statistics and

illustrates an approach used to make reliability cal-
culations.

Just as a bow-type imperfection increases the

bending stresses and reduces the buckling load of a

10



panel,it alsoreducesthe reliabilityof a panel. In
onecase,if thebowhasa normaldistributionwith
a meanof zeroanda standarddeviationof 0.05in.,
a paneldesignedmsif it wereflat wouldrequirea
designsafetyfactorofabout1.8to achieveareliabil-
ity of 0.99.Accountingfor additionaluncertainties
wouldrequirea largersafetyfactor.

To determinethe sensitivityof the reliabilityto
detailsof thebowstatistics,studiesweremadewith
threedistributionsof thebow.All distributionshad
thesamemeanandsamestandarddeviation.Only
the higherstatisticalmomentsdiffered.The three
distributionswerenormal,maximumextremevalue,
andminimumextremevalue. Althoughtheproba-
bility densityfunctionshadthesamegeneralshape,
thepanelreliabilitieswerequitedifferent.Thesedif-
ferencesindicatethat the reliability is sensitiveto
thedetailsof thebowdistribution.This sensitivity
shouldbe takeninto accountwhenengineersmake
assumptionsregardingtheprobabilitydensityof the
bowandselecta fabricationprocess.

Goodqualitycontrolwouldeliminatepanelswith
abowlargerthanaspecifiedmaximumvalue.Toex-
aminethe effectof qualitycontrol,panelreliability
wasstudiedfor bowswith truncateddistributions.
Tile basicdistributionswerethe samethreetypes
mentionedabove.Themaximumvalueof the bow
wassetat +0.04 in., which, for the example selected,
is twice the standard deviation of the untruncated

distributions. For two distributions (minimum ex-

treme value and normal), truncating the distribu-

tions caused the reliability to improve; for the re-

maining distribution (maximum extreme value), the

reliability was unchanged. The reliability is less sen-

sitive to the statistical details of the imperfection
when the distributions are truncated.

Several reliability computations are illustrated in

appendix C. With a single random variable, as is the

case in this report, the probabilistic computations are

straightforward. They are included for illustrative

purposes.

The studies emphasize the need for engineers to

account for imperfections when they design struc-

tural members. Probabilistic methods can help ac-

count for imperfections when these imperfections
contain uncertainties. One approach is to consider

the imperfections as random quantities with statis-

tical distributions. The structure could be designed

to minimize the weight or cost and still meet a spec-

ified reliability, or the structure could be designed to
maximize the reliability for a given cost or weight.

Because an increase in quality control could provide

a decrease in imperfections, which in turn, could al-

low a decrease in structural weight, cost compar-
isons could include quality control and structural

weight. For example, cost tradc-offs could be per-

formed between two equally reliable structural de-

signs: a lightweight design that requires considerable

quality control and a heavier design requiring less

quality control.

NASA Langley Research Center
Hampton, VA 23681-0001

October 27, 1992
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Appendix A

Analysis and Design Procedures

Buckling Analysis

Thebucklinganalysisusedto obtaintheresults
presentedin thisreport is containedin tile PASCO
computerprogram,whichanalyzesandsizesuniax-
ially stiffened(prismatic)compositepanelssubject
to the loading shown in figure A1. The PASCO pro-

gram (refs. 12 16) incorporates an earlier computer

program, VIPASA (refs. 17 19).

Z

Figllre A1. Stiffened panel with initial bow, applied loading,
and coordinate system. Figure indicates analysis capabil-
ities of PASCO.

The analysis treats an arbitrary assemblage of

plates, each with a combined in-plane loading of Nx,

Ny, and Nxy. The response of each plate clement
making up the stiffened panel is obtained from an ex-

act solution to the thin-plate equations. The analysis
connects these individual plate elements and main-

tains continuity of the buckle pattern across the in-

tersection of neighboring plate elements. All quanti-

ties that define the analysis problem (the panel cross

section, loading, boundary conditions, etc.) are as-

sumed to be uniform in the x-direction (fig. A1). The
buckle patterns in the x-direction are taken to be sine

waves whose half-wavclengths ,_ are fractions (l/n)
of the panel length (e.g., ,_ = L, L/3, L/9, etc.). For

orthotropic panels loaded only by Nx and Ny, the so-
lution is exact for panels that are simply supported
along the edges x = 0 and x = L.

The VIPASA program underestimates the buck-

ling load when the loading involves shear and the

buckling mode is skewed, with a longitudinal buckle

length equal to the length of the panel (_ = L). The
PASCO program contains an approximate approach,

the adjusted analysis technique, to overcome that

12

limitation. The basis for the limitation in VIPASA

and the adjusted analysis technique in PASCO are

described in reference 16. Because the loadings con-
sidercd in the present report involve shear, the ad-

justed analysis technique is used.

Analysis for Initial Bow-Type
Imperfection

The VIPASA analysis (hence, the PASCO anal-
ysis) cannot treat panels that are curved in the x-

direction. The approach used in PASCO is to treat

the panel as fiat (which allows boundary conditions

to bc imposed on the sides), but to use a stress dis-
tribution for a panel with a bow. The bow is in the

shape of a half-sine wave down the length. The fol-

lowing description of the analysis technique is taken
verbatim from reference 11:

The approach used here to account for the

effect of an initial bow in the panel is the

same as that used in reference 2 [10] (with
appropriate changes to account for laminated

walls). The panel is assumed to have the

initial bow shown in figure 1 [A2]. The stresses
acting on the panel cross section are taken

to be the sum of thc stress from Nx and the

stress resulting from the moment caused by

the bow. In terms of the longitudinal strain

ex, this gives

m x M • c

= + D---2- (1[A1])

The moment varies over the length of the

panel. At the midlength of the panel the

moment is largest and is given by

i X " e

M -- N (2[A2])
1-1_ E

in which NxE is. the Euler or wide-column

buckling load of the panel. The denomina-

tor in equation (2[A2]) gives the nonlinear ef-

fect of the deformation growing with the ap-

plied load. Except for one wavelength, the

buckling calculations are made assuming that

the midlength stresses from equations (I[A1])
and (2[A2]) are the stresses over the entire

length of the panel. The exception is tile buck-

ling mode having a half-wavelength _ equal to

the panel length L. For that case, the mo-
ment M is considered to be zero. The initial

bow in the panel does not, therefore, directly

affect the A = L buckling load.



X

  stvebowshown
Figure A2. Panel with initial bow.

As pointed out in reference 13, strictly speak-

ing, equations (I[A1]) and (2[A2]) are appropriate

only when Nx is the sole in-plane load. However,
in PASCO these equations are applied to problems
with combined loads. For the combined load cases

of Nx and Nxy considered in the present report,
equation (2[A2]) is rewritten as

Nxc

M - (A3)

where the parameter "_ is defined as

F
(A4)

,,/- FIA= L

in which F is a scalar defined by

Nz
F [ NxN;l design = [ Nxy ] failure (A5)

The design load vector on the left in equation (A5)

is scaled up or down with the parameter F to obtain

that combination that causes buckling or strains that

exceed allowables. The quantity FI,_= L is the value of
F for the lowest buckling load for which the buckling

half-wavelength )_ is equal to the panel length L. In

figures 10 and 11, the ratio of failure load to design

load is the same as the parameter F.

The above approach for treating a bow is an ap-

proximate one that captures the main features of the

physical problem. Because it is computationally effi-
cient, the approach can be used for optimization. It

is also reasonably accurate, as is seen in reference 12,

where Anderson and Stroud compare analysis with
test results.

Sizing

The computerized structural sizing approach used
in PASCO is based on nonlinear mathematical

programming techniques. The computer program

CONMIN (rcfs. 29 and 30) is the optimizer within
PASCO. Sizing variables are automatically adjusted

to obtain the design that minimizes an objective

function subject to a set of inequality constraints.

Taylor series expansions of the constraints are used
to improve computational efficiency.

For the studies presented in this report, the sizing
variables are widths of plate elements and thicknesses

of composite plies that make up the plate elements;

the objective function is the panel weight. Inequality

constraints are placed on buckling loads and in-plane

strains in each ply. The strain constraints are placed
on in-plane shear strains and on strains that are

tangential and normal to the fiber direction in each

ply.
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Appendix B

Failure Load as a Function of Size of Initial Bow

For the two panels discussed in the section "Final Designs," the failure load as a function of the size of the

initial bow is given in tables BI and BII. Numerical values are provided so that reliabilities can be calculated
for distributions of the bow not considered herein.

For the lightly loaded panel, table BI gives the ratio of failure load to design load (F in eq. (A5)) as a
flmction of size e of bow. Failure for this panel is buckling. These data are used to produce the curve in

figure 10.

Comparable data for the heavily loaded panel are given in table BII. Failure for this panel is excessive strain

(material strength) in the prebuckling stress state. These data are used to produce the lower curve in figure 11.

14



Table BI. Ratio of Failure Load to Design Load as Function

of Size of Bow for Lightly Loaded Panel

[For this panel, failure is buckling]

Bow, e, in.

0.000

.001

.002

.003

.004

.005

.006

.007

.008

.009

.010

.012

.014

.016

.018

.020

.025

.030

.035

.040

.045

.050

,055

.060

.065

.070

.075

.080

.085

.090

.095

•1O0

.120

.140

.160

.180

.200

.220

.240

.260

.280

.300

Failure load

Design load

Negative bow

0.9980

.9552

.9348

.9190

.9054

.893,1

.8827

.8729

.8639

.8555

.8476

.8331

.8199

.8078

.7966

.7861

.7625

.7417

.7231

.7062

.6906

.6763

.6627

.6500

.6381

.6269

.6163

.6062

.5966

.5874

.5786

.5702

.5398

.5134

.4901

.4694

.4508

.4338

.4183

.4041

.3910

.3788

Positive bow

0.9980

.9959

.9938

.9919

.9898

.9878

.9859

.9839

.9820

.9803

.9783

.9747

.9713

.9678

.9642

.9609

.9528

.9450

.9375

.9303

.9234

.9166

.9101

.9038

.8977

.8917

.8859

.8802

.8747

.8693

.8641

.8589

.8395

.8215

.8047

.7890

.7741

.7600

.7465

.7337

.7216

.7099

Table BII. Ratio of Failure Load to Design Load as Function

of Size of Bow for Heavily Loaded Panel

[For this panel, failure is excessive strain]

Bow, e, in.

0.000

.001

.002

.003

.004

.005

•006

.007

•008

.009

.010

.012

.014

.016

.018

.020

.025

.030

.035

.040

.045

.050

.055

.060

.065

.070

.075

.080

.085

.090

.095

.100

.120

.140

.160

.180

.200

.220

.240

.260

.280

.300

Failure toad

Design load

Negative bow

1.001

.9453

.9234

.9070

.8934

.8816

.8710

.861,t

.8526

.8444

.8367

.8226

.8099

.7982

.7874

.7773

.7546

.7348

.7170

.7008

.6861

.6723

.6596

.6477

.6365

.6259

.6159

.6064

.5973

.5886

.5803

.5724

.5435

.5185

.4963

.4765

.,1586

.4424

.4275

.4137

.4010

.3892

Positive bow

1.001

.965,1

.9513

.9406

.9317

.9239

.9170

.9103

.9043

.8992

.8940

.8845

.8759

.8679

.8604

.8535

.8377

.8236

.8110

.7993

.7886

.7786

.7691

.7603

.7519

.7438

.7362

.7289

.7219

.7152

.7087

.7024

.6794

.6589

.6405

.6237

.6083

.5940

.5807

.5683

.5566

.5456
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Appendix C

Reliability and Sample Calculations

Tile approach used to calculate the reliability is
based oil the definition of the probability density

function. Tile only random variable is the size e of
the initial bow. For these sample calculations, the

value of c is assumed to have a normal distribution

N(p, a), where p is the mean and a is the standard
deviation. For all studies in this report, p = 0;

for these sample calculations, a = 0.05 in. The

probability density function for this distribution of c

is shown in figure C1.

e-

6

.El

o 4
12_

0 i
-.2 .2

D

m

B

m

I
-.1 0 .1

Size of bow, e, in.

Figure C1. Probability density for normal distribution of
initial bow. p = 0; a = 0.05.

The reliability of the panel at a specified applied

load is the probability that the panel failure load

is equal to or greater than that specified load. In
a case involving a single applied load, such as Nx,

this definition of reliability is clear. However, in a

case involving combined loads, such as Nx and Nxy,

the term failure load can be ambiguous; various
combinations of applied load can cause failure. In

this report, all combinations of applied load are

obtained by scaling the design load vector. The

scale factor F (eq. (A5)) is the single parameter that

defines the intensity of the applied load that causes
failure. Based on that fact, the definition of panel

reliability given above can be restated in terms of F
as follows: the reliability R at a specified toad Fs is

the probability P that the panel's failure load F is

equal to or greater than that specified load Fs. This
definition of reliability can be expressed as

R(F_)=P(F > F_) (C1)

Because the relationship between e and F is

known or can be computed (figs. 10 and 11 and ta-

bles BI and BII), the probability that the failure load

is equal to or greater than a specified load can be con-
verted to the probability that the random variable c

takes on a value within a certain range of values.

That is,

P(F >_ Fs)=P(el _< e _< e2) (C2)

Furthermore, because e has a specified distribution
in this case a normal distribution the right side of

equation (C2) can be evaluated in a straightforward
manner.

A graphical interpretation of the evaluation
method is illustrated in figures C2(a) and C2(b)

(adapted from fig. 5.19 in ref. 24). The failure curve
for the lightly loaded panel is shown in figure C2(a);
the distribution of e for a = 0.05 in. is shown in fig-

ure C2(b). The values of e for the upper figure are

aligned with those of the lower figure. Based on the

definition of the probability density function, the re-
liability of the panel at F = 0.80 (for example) is

equal to the shaded area in figure C2(b).

The dashed line at F = 0.80 intersects the fail-

ure curve at el = -0.01739 in. and e2 = 0.1660 in.

(These two values of e and the four values given in
eq. (C8) were obtained by a linear interpolation be-
tween data points given in table BI, not from graphs.)

The area of the shaded region can be calculated by

first transforming el and e2 to standardized vari-
ables el and e2 aussociated with a standard normal

distribution N(0, 1) so that

gl - el - p _ -0.01739 - 0 = -0.3478 (C3)
a 0.05

g2 - e2 - p _ 0.1660 - 0 _ 3.320 (C4)
a 0.05

Letting q5 denote the standard cumulative distri-

bution function, the area A of the shaded region is

given by
A = q5 (g2) - q5 (_1) (C5)

The function q5 can bc evaluated from a table for a

standard normal distribution function (see, for exam-

ple, section 3.2.1 of ref. 25) or with a calculator that
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Figure C2. Graphical interpretation of procedure for calculating reliability at a specific load (figs. C2(a) and (b)) and probability

of failure between two specific loads (figs• C2(c) and (d)) for lightly loaded panel with a bow probability density of N(0.0, 0.05).

has a statistical mode. For this example, calculations

give

P(_ <_ _ < _2) = A = _(_2)-_(_)

= cI,(3.320) - ,:I,(-0.3478)

= 0.99955 - 0.36400

0.64 (C6)

Therefore, the reliability of this panel at a loading
of

[] [] r3,,001r2,ool]_[r = Fs NxNX._ =o.sOL_oooj LS°°.l
Nxg applied design

(c7)

is R(0.80) _ 0.64. Thus, if many such panels are
involved, approximately 64 percent of them survive
at this load level.

Based on the same approach described above, a
histogram that indicates the frequency distribution
of F can be generated. For example, the approach
used to calculate the probability that the panel will
fail in the range 0.80 _< F _< 0.85 is illustrated in
figures C2(c) and C2(d). The sum of the areas of the
two shaded regions gives the desired probability.

The intersections occur at

cl = -0.01739 /

e2 = -0.009696

e3 = 0.1092

e4 = 0.1660

(C8)
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The corresponding standardized variables are cal-
culated to be

gl = -0.3478

_2 = -0.1939 / (C9)
_a = 2.184

_4 = 3.320

The total shaded area A is given by

A = q) (_2) - _5 (gl) + _P (e4) - _ (e3)

= 0.42313 - 0.36400 + 0.99955 - 0.98552

= 0.07316 (el0)

Thus, approximately 7.3 percent of these panels fail
in tile range 0.80 < F _< 0.85. An alternate way

to interpret the above calculation is to note that

P(O.80 < F _<0.85) = R(0.S0) - R(0.85).

This approach can also be used to calculate the

probability density function for failure. The prob-

ability density is given (in this case) by -OR�OF,
which can be evaluated with the finite difference ap-

proximation -AR/AF. The quantity AR is the
change in R between two values of F and is given

by equation (C10) with a change in sign. The quan-

tity AF is the increment in F used to calculate AR.

By using the data in the previous example, we can ap-

proximate the probability density of F at F = 0.825

(the midpoint of the increment) with

AR -0.07316
1.46 (Cll)

AF 0.05

18



Appendix D

Distribution Functions and Related Statistical Parameters

ThesymbolF is the traditional symbol used to denote the cumulative distribution function. That is the

way it is used in this appendix, but in this appendix only. In all other portions of this report, the symbol F has

a different meaning, as noted in the list of symbols. Additional information on the distributions summarized

in this appendix is given in references 24-28, 31, and 32.

Normal Distribution

The two parameters of this distribution are # and a, where a > 0.

For the cumulative distribution function,

/] [ ]F(x)= 1 exp -(t-p)2/2a2 dt (-oc<x<oc) (D1)

For the probability density function,

1
/2a 2] (-oc < x < oc) (D2)f (x) -- _v#_ exp [- (x -/,)2

Mean = Mode = Median =/z

Standard deviation = a

For a standard normal distribution, substitute z = (x - p)/a into equations (D1) and (D2). Note that in

equations (D1) and (D3), t is a dummy variable.

For the standard cumulative distribution function,

1 y (-t2/2) dt (-o¢<z<oc) (D3)= -- exp
(I) (z) F (z) x/_ oc

For the standard probability density function,

1
(-z2/2) (-co < z < oc) (D4)¢(z)=f(z)= _ exp

Mean = Mode = Median = 0

Standard deviation = 1

Type I Asymptotic Distribution of Maximum Extreme Values

The two parameters of the distribution are u and a, where a > 0.

For the cumulative distribution function,

F (x) = exp{- exp[-a (x - u)]} (-oc < x < oo) (D5)
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Fortheprobabilitydensityfunction,

f (x) = aexp{-a (x- u) - exp[-a (x- u)]} (-co < x < co) (D6)

u + 0.5772
Mean

a

Mode = u

Median = u- [ln (ln 2)]
a

Standard deviation-
rr 1.2825

av/-6 a

(0.5772 is Euler's constant)

Type I Asymptotic Distribution of Minimum Extreme Values

The two parameters of the distribution are u and a, where a > 0.

For the cumulative distribution function,

F (x) = 1 - exp{- exp[a (x - u)]}

For the probability density function,

f (x) = a exp{a (x - u) - exp[a (x - u)]}

(-oc < x < _c) (D7)

(-ec < x < ec) (D8)

u - 0.5772
Mean

Mode = u

Median =
u + [ln (ln 2)1

Standard deviation -
1.2825

-- m _ m

av_ a

(0.5772 is Euler's constant)

Truncated Distributions

The truncated distributions used in this report are similar to the original distributions with two exceptions.

First, the tails of each probability density function (pdf) are eliminated. Second, the remaining portion of each

pdf is multiplied by a factor greater than unity to account for the "missing" tails. The factor is the reciprocal

of the area under the remaining pdf. As a result, the arca under the pdf of the truncated distribution is equal

to unity. The cumulative distribution function is adjusted with the same factor.

For example, in the case of the truncated normal distribution with the truncation at =t=2a, the factor is

approximately 1.0477. The pdf is given by

0 (x < -2a)
1.0477 exp -- /2a 2] (--2a < x < 2a) (D9)f(x)= [-(x u)2

0 (x > 2a)

For the two extreme value distributions, the factor is approximately 1.0449. The pdf's for the original and

truncated distributions are shown in figure D1.
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Figure D1. Probability density functions for distributions shown in figures 15 and 18.
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